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Non-Linear Vibration Analysis of Mechanical Structure
System Using Substructure Synthesis Method

Byungyoung Moon*, Jin-Wook Kim** and Bo-suk Yang***
(Received February 25. 1999)

In this paper, a new method of analysis of a complex nonlinear vibration system is presented.
Combining substructure synthesis and perturbation methods the computation cost for large
mechanical system is considerably reduced.

The system is divided into components. Under the assumption that the mode shape does not
change, these are approximately transformed to modal coordinate system with nonlinearity.
Using perturbation method, the overall modal equations are derived and solved sequentially.
These solutions are synthesized to the overall system. Solution of the overall system is obtained
in the modal coordinate system and then, these are translated into the physical coordinate. This
method is applied to a vibration analysis of a large mechanical structure system composed of the
rotor-bearing and casing. In order to illustrate accuracy and computation time of the proposed
method, the results are compared with those obtained by the finite element method.

Key Words: Vibration of Rotor System, Substructure Synthesis Method, Non-Linear Vibra­
tion, Response Analysis-

1. Introduction

In structural dynamics, numerical integration
of equation of motion is used frequently after
formulating the structures by finite element
method in order to find the response of structure.
These methods assume that the objective system is
a linear one. But in the actual systems, the
response characteristics, experimentally obtained,
are generally affected by the nonlinearity. There­
fore, for accurate structural dynamic analysis of
the real system, nonlinear characteristics had to
be considered. Dynamic response of multi­
degrees of freedom (MDOF) nonlinear structure
is usually determined by the numerical integra
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tion of motion equation. This nonlinear dynamic
analysis is time consuming and expensive, particu­
larly if the computations had to be repeated
several times to arrive at representative response
values for design. Therefore, in many branches of
structural dynamics, approximate analytical tech­
niques are used as an alternative to numerical
integration procedures for the steady state
response analysis of nonlinear MDOF structures.
A number of analytical methods for nonlinear
systems have been investigated. These include the
averaging method (Glisinn, 1982), the Ritz-Galer­
kin method(Ymaki, 1980), perturbation method
(Harris and Crede, 1987) and harmonic balance
technique (Choi and Noah, 1987). Nataraj and
Nelson (N ataraj and Nelson, 1989) used
trigonometric collocation to analyze the periodic
response of rotor dynamic systems which is
affected by the nonlinearities.

In recent years, reduction of computation time
for a given level of accuracy in the case of linear
and nonlinear dynamic problems has become the
focus of intense research efforts. The dynamic
analysis of structural systems requires the solution
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of large order sets of linearized differential equa­
tions of motion. These linear equations are fre­
quently diagonalized by means of an eigenvector

transformation, which greatly simplifies the anal­
ysis. Such large order systems may be time con­
suming to set up and costly to solve in terms of

computer time and storage. The sub-structure
synthesis method developed herein allows for
significant reduction in the size of the overall

system problem which retaining the essential
dynamic characteristic.

The authors (Iwatsube, et. al., 1998) proposed a

new method to analyze the dynamic problems of
MDOFsystems with nonlinearity by using sub­
structure synthesis method (SSM). The SSM tech­
nique can reduce the overall size of the problem
for the nonlinear structure. The approximate
solution of nonlinear rotor system is obtained
using the perturbation method. However, in rotat­

ing machinery, ball bearing clearances, squeeze
-film dampers, journal bearings, seals, and fric­
tional forces, etc. contribute to the nonlinearity.
When such system is subjected to a periodic
external excitation, they respond with a variety of

complex dynamic behaviors in certain parameter
ranges.

Therefore, this paper developed more expanded
analytical technique of the nonlinear rotating
machinery vibration including bearing nonlinear­
ity by applying the SSM using the normal modes

of the vibration, which are obtained by linear part
of equation of motion, and the perturbation
method. This method is applied to rotor system in

order to demonstrate the performance of the
method in respect to accuracy and computation
time. Results are investigated for the effect of

bearing and rotor nonlinearity to the overall
system.

2. Method of Analysis

The structural system to be considered consists
of a set of interconnecting components that are
segments with distributed mass and elasticity and,
in general, nonlinear parts. We will assume that

the structure is divided into linear and nonlinear
substructures with nonlinear conjunction region

in the nonlinear structural problems as shown, in

Fig. I. First stage in the process is the sub
-structuring of the original nonlinear system into
components that can be modeled separately with

linear and nonlinear set. This step results in the
division of a larger system into smaller subsys­

tems, which may be easier to model, and enables
the segregation of linear and nonlinear compo­
nents.

2.1 Substructuring the overall system
Assuming that the overall dynamic system is

divided into 2 components, the first component of
internal region with nonlinearity is now consid­

ered as substructure I for the analysis. The second
component of internal region without nonlinear­
ity is considered as substructure 2. And there is an
elastic assembling region between both compo­
nents. A complete formulation of the analysis is

presented regarding that the model is the rotor
system as a case of nonlinear structure system.

The nonlinear components include the shaft

Fig. 1 Sub-structuring of nonlinear system.
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Fig. 2 Rotor-bearing-casing system.
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[Md{XI}+[Kd{X} +e[KN]{Xt}
= {FI} +{fbi} (3)

where [MI] is the mass matrix. {Fd and {fbi} are
exciting force vector and internal force vector,
respectively. e is a small parameter which is

where [KI ] , [KN ] are the stiffness matrix and
nonlinear stiffness matrix, respectively. By using
the finite element method, adding the external
force and considering the boundary conditions,
the equation of motion for the rotor as compo­
nent I can be written as follows: (7)

(4)

Here, subscript denotes substructure I. Sub­
stituting Eq. (4) into Eq. (3) and pre-multiplying
by [<PIF, Eq. (3) can be expanded to the modal
equations, which consist of the equations with
respect to the linear and nonlinear term.

[\I\]{ tl} +[\ wi\]{ .;d + s] <PI Y[K"]{Xt}
=e{fel}+fbl (5)

where {fel}=[ <P1F{FI}' fbi is the internal force
term in modal coordinates. Usually
[<PIF[KN ]{Xt} is not diagonal matrix. But as
[KI ] and [KN ] are derived in almost similar
processes, this term will be changed in modal
coordinates as follows:

In Eq. (6), (';ll' ''', ';In) are coupled each
other. By considering their ratio Eq. (6) can be
treated in a compact form. To obtain the ratio of
each modal coordinate displacement, the
eigenvector matrix [<PT] of overall system with
only linear part is analyzed. The following trans­
formation with [<PT ] is applied.

The first mode is a governing mode of the
vibration of the system comparing with the other
higher modes because the system is excited
around the 1st natural frequency. Therefore, we
use only 7]1 with neglecting the higher order to

l
X~l l l [¢U';1l+¢12';12+"'+¢ln';ln]:I

{Xt} = X:12 = [¢21';1l + ¢22';22:+'" + ¢2n';2n]
. .

xfn [¢nl';ll + ¢n2';n2+'" + ¢nn';nn)3
(6)

defined in terms of r- The displacement vector

{Xd={xm, Ym, 8xm, 8ymy, (m= I, 2, "', J), is
consist of the displacements and rotations for the
x and y-directions for the m-th nodal point. J is
the number of elements. In order to obtain the
modal coordinate system, the linear homogeneous
equation of Eq. (3) is analyzed where the govern­
ing vibration mode of the system is assumed to be
linear in spite of nonlinearity. By using the modal
matrix [<Pd, the displacement {XI} in physical
coordinate can be transformed into the displace­
ment {';I} in the modal coordinate as follows:

(2)

(I)

2.2 Component L-Shaft with nonlinearity
The shaft is modeled by using finite element

method. At that time, the nonlinear restoring
force characteristic of each element is considered
as a relation that the stress of the element by
bending moment is equalized with the restoring
force which is cubic stiffness type nonlinearities
as follows:

and the bearing as interconnection region. Pedes­
tal is the linear component. Coordinate systems of
rotor are shown in Fig. 2. The O-xyz coordinate
system is fixed in space such that the origin
coincides with the center of the shaft, x-axis is
horizontal of shaft, y-axis is vertically upwards.
The acceleration of gravity and any non-uniform­
ity in the cross-section along its length are ignor­
ed.

where a, € and y denote the stress, strain and the
material coefficient, respectively. To determine
the strain energy accompanying the deformation
of elastic rotor due to bending, let us consider the
strain-stress relationship of Eq. (I) disregarding
axial deformation. The nonlinear stiffness term
for the rotor element is determined approximately
by a similar way with linear stiffness matrix by
considering the strain energy. Thus, the nonlinear
restoring force term can be formulated in complex
form including a cubic term. As the first step of
analysis method, we assume the nonlinear restor­
ing term [R] can be approximated in a simple
form as follows:
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(14)

(8)

(15)

[M2]{X2}+[K2]{ X 2}={F2} + {fb2} (17)

where [M2] and [K2] are the mass matrix and
stiffness matrix. {F}, {fb2} are exciting force

vector and internal force vector. respectively.

After the eigenvalue analysis, the Eq. (17) is

changed into modal coordinate as the same way

as in component I under the assumption of pro­

portional weak damping,

t~i+ e2!;2iCll2i~2i+ClI~i~2i=fm+ fb2 (18)

where {fez;}=[ (J)2Y{F2}· fb2 is internal force term

in modal coordinates.

2.3 Component 2-Casing
To apply the substructure synthesis method, the

nonlinear rotor system is divided into three com­

ponents, which are the nonlinear rotor, casing

and bearing as conjunction region.

The casing, which is the linear system, is also

modeled by using finite element method. The

equation of motion can be written as

Although the above procedure is theoretically

valid for equations of any order, the vibration

modes of each subsystem are limited owing to its

restriction. It is clear in rotating machinery such

as aircraft engine, the amplitude of vibration

modes of the casing is smaller comparing with the

shaft one. Therefore, it is assumed that the inter­

nal force of subsystem is not so effective to the

shaft vibration. Inserting the perturbation Oth

order solution of Eq. (14) without internal force

into the perturbation Ist order of Eq. (15) and

using the trigonometric relation, we obtain the

developed Eq. (15). Then, the particular solution

of Eq. (15) can be obtained. ClI~ni are derived
from the relations of perturbed frequency of Eq.

(13). In the numerical analysis, Eqs. (14) and

(15) can be solved simultaneously, so nonlinear

modal Eq. (II) can be written by simultaneous

linear equations which variables are {~I~>' ~IPr.

where ft~', fW are perturbed internal force terms.

The term fPl is the displacement dependent non­

linear term.

fPl (~I~), ~I~» = ,uiP~I~) - ClIINi~n)3- 2!;liCllli~i~)

(16)

(i = 1- n, r =2- n). Thus, the nonlinear term is

approximated as diagonal matrix resulting in

efficient analysis. Therefore, all components of

Eq. (3) become diagonal matrix. i th element of

Eq. (3) is written as follows under the assump­

tion of proportional weak damping and external

force:

[(J)T Y[KN ]{Xf}=[ (J)IY[KN][ (J)N]{m

= [\ClIfN\){m (9)

where each component of [ (J)N] are as follows:

tPNil=r/J~1+3(Ml(¢i2 (J)Z21 +¢i3 (J)Z31 + ...
(J)Zl1 (J)Zl1

+¢ (J)znl )+(6¢' r/J. r/J. (J)Zl1 (J)Z2l (J)Z31
,n (J)Zl1 d ,2 ,3 (J)rl

+"'+6¢ ¢ ¢ (J)n-2 ttPn-ll(J)nl)
m-2 In-l tn (/Jtl

rt\ - ..1.3 3..1.2 (A, tPZll A, (J)Z21'VNiT - 'l'iT + 'l'iT 'l'il-;;;;;-+ 'l'i2-;;;;;-+'"
WZrl 'VZrl

+ ¢in (J)znl ) (10)
(J)ZTI

By using the Eq. (8), the nonlinear term of the

Eq. (5) can be transformed into modal coordi­

nates.

tli+e2!;liCllli~li+ ClIfi~li+ eCllfNi~ri

=feli+fbl' (i=l, 2, "', n) (II)

n is the number of modes. In Eq. (I I), the small

variant eCll~ni can be regarded as the perturbation

parameter term, because the variant eCll~ni is rela­

tively smaller than ClI¥.-. The dynamic responses ~Ii

can be expanded in terms of a series of the

perturbation parameter e expressed as follows:

~li=~I~)+e~IP+£2~H)+ .. ·, (12)
ClIIni= ClI¥.-+ e,u!}) +£2,u\~) +..., (13)

where ClIIni is the frequency of the nonlinear
oscillations. Here, superscripts «0),(1).(2» denote

the perturbation order. Substituting Eqs. (12)

and (13) into Eq. (II), rearranging them and

neglecting the terms involving e2, £3 and e', we

obtain the following equations

obtain modal coordinates ratio approximately.

E (J)T21 E E (J)T31 e
,,12= (J)T11 <;11> <;13= (J)T11 <;11

E (J)Tnl e
C;In = (J)T11 <;11
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where f~~>' f~~) are perturbed internal force term in

modal coordinates.

where [Kb ] is the bearing stiffness matrix and

{Fb } is bearing force. O'{Nb } is a displacement­

dependent nonlinear term of the bearing where 0'
is defined in terms of nonlinear characteristic.

The conjunction region is assumed to be expres­

sed as the linear combination of the component

eigenvectors as follows:

{Xbj} = {xi,~)} +c{xi,}l}:;:[ cPbj]{ WO)}
+c{e:JI)}} (j= 1, 2} (22)

where [cPbj] are eigenvectors of conjunction

region, which is derived from the each compo­

nent's eigenvectors corresponding to bearing

parts. By substituting the internal force which is

eliminated by conjunction and arranging with e.
the perturbed each component equation and con­

junction region equations are obtained. Internal

force of components I and 2 which are consist of

bearing stiffness term is formulated as follows:

{fbj}={f~~)}+c·{j~Y} (j= 1,2)

{fbi}= [kbI2]{Xi,~} + [kbll]{Xi,°/}
+e- {[kBl1J{xW} + [kBI2]{Xi,V}
+ [kbll]{XI,~)3} + [kbI2]{Xi,~3}} (23)

{fbd= -{jb2}

By substituting Eq. (23) into each component

as internal force, the variables of each component

e:li, e:u, are written to perturbation form. We
obtain the sets of perturbed equations for compo­

nents I and 2. Therefore, the equation of conjunc­

tion region is expressed with the Oth order and the

lst order of perturbation equations. The charac­

teristic of this analysis method is to perturb the

each nonlinear component in matrix form and

perform the mode synthesis at bearing part.

3. Synthesis of Nonlinear System

(20)

( 19)
~~~) + Q)~ie:~~) = fm +f~~)

~W+ Q)~ie:W= fp2 (~~~» +f~~)

where fbi' fb2 are internal forces. kbik, kBik and xs,
(j, k = I, 2) are bearing coefficients, nonlinear

bearing coefficients and physical coordinates,

respectively. The nonlinear coefficient of bearing

0' as a small value is assumed to be expressed as

e, which can be perturbed as same as in compo­

nent I.

2.4 Assembling region-Bearing with non­
linearity

To apply the substructure synthesis method, the

nonlinear bearing is considered as assembling

region. The nonlinear bearings are modeled as

ball bearings in this case, such that they have a

cubic nonlinear term, where the force and dis­

placement expressions are given in matrix form.

Generally, there is a damping term in the bearing,

but it is ignored in this study. Displacement of the

rotor due to the bearing displacements are given

by X;

2.5 Formulation in assembling region
The perturbed equation for assembling region

can be derived in accordance with substructures I

and 2. Nonlinear Eq. (21) can be rewritten as a

linearized equation by using perturbation approx­

imation.

When the overall system is excited near the 1st

natural frequency, there is a nonlinear vibration

influence in substructure 2 as same as in the

assembling region. It is regarded that the effect of

nonlinearity of neighboring component is tran­

simitted through the conjunction. Therefore,

those nonlinearities are also subject to perturb.

In this section, a nonlinear rotor system, which

is divided into three components; the nonlinear

rotor, casing and nonlinear bearing as conjunc­

tion region as shown in Fig. 2, is considered. By

truncating the vibration modes of the rotor and

casing system according to the substructure syn­

thesis method in elastic conjunction, which is

applied to the unconstrained elastic mode synthe­

sis in elastic conjunction, the reduced order equa­

tion of motion can be obtained.

3.1 Time domain response
The terms of the stiffness matrix of the interface

are related to the stiffness matrix of the casing
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structure. The equations of motion of the typical
linearized nonlinear rotor system and of the cas­
ing component of the generalized modal coordi­
nates may be expressed as follows:

[M]{~)+ [K]{';} = {F (e, t)} (24)

where [M], [K] are the mass matrix and the
stiffness matrix of the overall system which are
composed of each component and assembling
region.

{';}={{.;i0l}, {.;ill}, {Xb~l}, {XbV}, {xblll},
{XbY}, {,;JO)}, WllW,

{F(e, t) }=UEb fPb - fW, - f'bi>, f'b~l, f'b~),

IEz, Ipz}T (25)

where the superscripts stand for perturbation
order and subscripts stand for each component. In
order to reduce the number of degrees of freedom,
the following transformation is applied,

[f] 0 0 0
0 [I] 0 0

[¢bl] 0 0 0

r']{.;} = 0 [¢od 0 0 ~lll

0 0 [¢bZ] 0 ~JO)

0 0 0 [¢bZ] ,;Jll
0 0 [1] 0
0 0 0 [T]

=[P]{~Jl)}, (j=I, 2), ([=0, I) (26)

where, [f], [p] are unit matrix and transforma­
tion matrix, respectively. By substituting Eq. (26)
into Eq. (24) and pre-multiplying by [p)T yields

{~Jl)}+[Kt]{';Jl)}=U~ (';(1), t)} (27)

U~ (';(1), t)}

j
[¢aIY .Utli} ]

= [¢al)T· {fPIW~), ~l~»} + [¢bIY •{j'bP}
[¢azY•Um}

[¢azV' {jpz wn}+ [¢bZY •{fM)}

jum]_ um
- {jm

um
where [¢arJ, [¢az] are eigenvectors of only inter­
nal region in each substructures. [Kt] is reduced
order stiffness matrix term. The number of equa­
tion is depend on the number of adopted modes
in Eq. (23) and the number of adopted terms in

Eq. (21). This point is the advantage in case of
using the substructure synthesis method. After
obtaining the reduced order equation, those equa­
tions are divided into two sub-equations by the
terms of perturbation order.

perturbation Oth order part:

{ {~IO) } } + [ [ wI i ] + [ ad [az] ] {{.;l0l}}
{eJO)} [a3] [w~.] + [a4] WOI}

={Um} (28)
{fJ~)}

[all = [¢bly[kbll][ ¢bl], [az]= [¢bl)T[kbIZ][ ¢bZ],
[a3]=[¢bzy[kbZIJ[¢bd, [a4J=[¢bzy[kbzzJ[ ¢bZJ

perturbation Ist order part:

{ {~F ) } } [[WI;]+[bl] [bz] ] {{.;lll}}
{~Jll} + [b3] [UJ~i]+[b4] {~Jl)}

={UW}} (29)
{jgl}

[bd = [¢bly[ksll][ ¢bl], [bz] =[¢bIY[ksIZ][¢bZ],
[lhJ= [¢bzy[kszr][¢br], [a4J =[¢b2F[kszz][ ¢bd

where the {jJ:~z} ([ =0, I) are displacement
dependent outforce vector after the elimination of
the internal force. After obtaining the responses
of the overall system, then those are changed into
the physical coordinates at last.

3.2 Frequency domain response
Here, an analytical frequency domain tech­

nique based on the modal superposition principle
is presented in the context of obtaining the funda­
mental harmonic response of the rotor system
with nonlinearities. This method, which is being
used as an alternative to numerical integration
procedures for steady state periodic response, is
compatible with the need of the modal analysis to
identify the frequency response characteristic of
MDOF systems with nonlinearities. The equation
of motion of a nonlinear rotor system modeled as
an n degrees of freedom discrete system in the
modal coordinates can be expressed in the form of
each substructure as Eq. (II) and Eq. (18).

The overalI system is analyzed by combining
subsystems with conjunction part as shown in
Fig. 1 schematical1y. The internal forces can be
eliminated by the synthesis as in time domain
analysis. We seek the steady-state harmonic solu­
tion by the iteration, which is a process successive
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Table 1 Properties of the rotor system.

4. Numerical Examples

The rotor and casing are to be analyzed as
uniform beams modeled by the twenty finite
elements, respectively. The material density and

The rotor system whose properties are tabulat­
ed in Table I is considered in this analysis with
cubic stiffness type nonlinearity in shaft and
bearing of rotor system. The material coefficient r
in Eq. (I) is 0.1. The perturbation parameters c
in Eq. (II) and 0 in Eq. (20) are set as follows:

c=O.09, 0=0.1

the modules of elasticity of rotor and casing are
assumed to be identical, respectively. The damp­
ing ratio of the rotor and casing in each normal
mode is given by ~=0.01. The casing is con­
strained to foundation. The damping of the bear­
ing and constraint is ignored.

Table 2 shows the natural frequency of rotor
system in Hz by FEM and SSM (Substructure
Synthesis Method) where the adopted component
modes are changed. The results obtained by con­
sidering 20 modes of each component in SSM are
in very good agreement with those obtained by
FEM. Therefore, 20 modes of each component are
considered for the further response analysis.

Figure 3 shows the critical speeds for lower
three modes of rotor system, which are calculated
by FEM and SSM. The first three critical speeds
in SSM that are in good agreement with those
obtained by FEM varying typically with support
stiffness.

In this analysis model, the response is consid­
ered at the representative nodal point (x-direc­
tion) of rotor system such as at the middle of
shaft (unbalancing point).

Figure 4 compares time domain responses of
SSM with those of FEM when the center of rotor
is excited at 451 rad/s by unbalance of rotor
(unbalance=88.3 g-rnm) where the first natural
frequency of the system is 460.52 rad/s. It can be
observed at the selected point that by using only
20 modes relatively accurate responses of the
rotor system can be simulated comparing with
responses of FEM, as shown in Fig. 4 (a), (b)

800

16

50
2.1 x lO"

2.1 X lO"

7.81 x 1()3

·I.Oxl()6

1.0 x 1()6

L(mm)

DR (mm)

Dp(mm)

E(Njm 2
)

E(Njm2)

p(kgjm3)

kb1h kbZ2(Njm)

kS1h kB22(Nj m)

Length of rotor &casing

Diameter of rotor

Diameter ofcasing

Young's modulus of rotor

Young's modulus ofcasing

Density of shaft & casing

Bearing coefficient

Nonlinear Bearing coefficient

approximation. Assuming the first approximation

to be c;o=A cos wf+ B sin tot and its substitu­
tion into the differential equation results in a
polynomial expression of trigonometry. By equat­

ing the coefficients of cos tot and sin ait, and
squaring these results, the relationship between
the frequency, amplitude and force terms are
obtained. This procedure can be repeated any
number of times to achieve the desired accuracy.

Table 2 Natural frequency of rotor system (Hz)

FEM SSM

Adopted mode number

Mode (DOF=168) (Shaft/Casing element)

No. 10/10 20/20 40/40

1 73.29 73.10 73.28 73.29

2 164.26 162.52 164.23 164.27

3 310.64 312.13 310.62 310.63

4 488.22 487.27 488.23 488.23

5 668.24 668.54 668.81 668.83

eMS

FEM

104 lOS 10' 10'
Bearing StUrness [ Nlm ]

Fig. 3 Critical speed diagram
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Fig. 4 Responses of FEM and SSM at shaft and casing.
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1.05
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1.1

Fig. 5 Responses of FEM and SSM with changing modes.

and (c). The difference of the responses is regard­
ed as the influence of discarding the higher modes
of the system in SSM with adopting only 20
modes and the influence of working in the higher
frequencies in FEM result. Next, we show the
computing time to verify the effectiveness the
proposed method in time domain analysis based
on one frequency by FEM and SSM. As an
example, the calculation time of the responses of
Fig. 4(a) is regarded. The proposed method takes
5 minutes 8 seconds to calculate the time
responses until 1.1 seconds, while direct integra­
tion takes 39 minutes 40 seconds by using the
computer Ultra 1, SunMicrosystem Co.. As a
result, it can be observed in this study that drastic
reduction in computational time can be obtained
while keeping the accuracy by adopting only
lower 20 modes what is a critical factor in the
analysis of structural dynamics with a large num­
ber of degree of freedom.

Figure 5 compares time domain responses of
SSM with FEM in the same condition with Fig. 4
by changing the adopting modes. It can be obser­
ved at the selected point that by using 10, 20, 40
modes relatively accurate responses of the rotor
system can be simulated comparing with response
of FEM, as shown in Fig. 5 (a), (b) and (c). As
can be noticed from Fig. 5 (c), there is not a
notable response difference between FEM and
SSM responses. The proposed method takes 7
minutes 23 seconds to calculate the time response
until 1.1 seconds, while direct integration takes 39
minutes 40 seconds, as shown in Fig. 5(c).

Figure 6 shows the corresponding responses at
the middle of shaft and their FFT for the case
where the rotor and bearing nonlinear coefficients
are y=O.1 and 0=0.1 in physical coordinates,
respectively. The responses for the case of non­
linearity in shaft only and in bearing only for the
same excitation frequency are shown in order to
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compare their effect on the overall system. It can
be observed that the FFT result of the nonlinear
bearing response have higher frequency compo­
nent (perturbation Ist order amplitude = 8.08 X 10
-7 (m) than those for the nonlinear response of

(b) FFT of Responses

3

Response at center of sha

1 2
Non-dimensional Frequency

6

8 x10" (a) Frequency Response

shaft component (perturbation I st order ampli­
tude =7.29 X 10-8 (m) which is the perturbation
1st order amplitude in terms of the nonlinearity
characteristic, as shown in Fig. 6 (a) and (b).

Figure 7 shows the sensitivity of bearing non­
linearity and shaft nonlinearity to the overall
system by changing the nonlinear parameter in
physical coordinates from 0.01 to 0.2 with nearly
same linear stiffness (l.Ox 106 (Nyrn) ).

Fig. 7 (a) is a FFT result of time response of at

the middle of shaft where the value of (Xl =
[a>l]{.;!O)+c';j!I}, Xpl=c[a>l]{';j!l}) are taken
from the Eqs. (28) and (29). Investigation of the
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sensitivity, as shown in Fig. 7 (b) and (c), reveals

that the sensitivity of the bearing is bigger than

that of the shaft. It is regarded that the nonlinear­

ity in the bearing had a more significant effect on

the rotor's response compared with the nonlinear­

ity in the shaft system.

Figure 8 shows the nonlinear frequency

response at 6 ern from the middle of rotor and at

the bearing as a function of the frequency in non

-dimensional form, which is equal to the rotating

speed divided by the first critical speed. It can be

observed that the resonance peak of each selected

point is not straight, but slopes to the right for

hardening nonlinear system, as shown in Fig. 8

(a) and (b).

S. Conclusions

In this paper, the vibration analysis method of

a rotor-bearing and casing nonlinear system that

represents a large mechanical nonlinear structure

were theoretically formulated, using the perturba­

tion method and the substructure synthesis

method. By applying the perturbation method. the

approximated solutions were obtained in the

nonlinear component and assembling region. The

whole governing equations were synthesized

using the substructure synthesis method and car­

ried out the nonlinear formulation. It was shown

that nonlinear responses could be efficiently cal­

culated by selecting a proper number of vibration

modes for economical calculation. It was obser­

ved that the nonlinearity in the bearing had a

more significant effect on the rotor's response

compared with the nonlinearity in the shaft sys-

tern.
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